# Normalização de Bancos de Dados

Formas Normais, Dependência Funcional, Dependência Transitiva, Dependência Multivalorada, Dependência de Junção

**Prof. Leandro Colevati** 

# Qualidade do Projeto Lógico

### Como avaliar a qualidade do esquema da relação?

- Semântica
- Implementação/desempenho

#### Análise informal:

Princípios para um bom projeto

#### Análise formal:

- Dependência funcional
- Normalização

### Qualidade do Projeto Lógico

### Análise Informal (princípios):

- Semântica de atributos
- Redução de redundância em tuplas:
  - prevenção de anomalias de inserção
  - prevenção de anomalias de remoção
  - prevenção de anomalias de alteração
- Redução de valores nulos
- Prevenção de geração de registros(tuplas) espúrios (ilegítimos)

### Exemplo:

#### Combina informações de tipos diferentes de entidades

Problema semântico

#### Redundância em relação às informações armazenadas

• Dados do departamento (Nome Depto e CPF Gerente Depto)

#### Inserção

- Para inserir um empregado, é necessário cadastrar informações sobre o departamento (ou nulls)
- Tais informações podem gerar dados inconsistentes sobre o departamento

#### Exclusão:


Apagar um empregado pode significar apagar as informações do departamento

#### Atualização:

- Mudar o valor de um atributo de um registro de EmpregadoDepto pode implicar em ter de alterar outros valores correspondentes
  - Ex.: mudar Codigo\_Depto

#### Valores *null*:

- Se muitos atributos não se aplicarem a muitos registros da relação, poderemos desperdiçar espaço de armazenamento.
  - Ex: Incluir no escritório na relação "empregados", sendo que somente 10% destes possuem de fato um escritório



### Qualidade do Projeto Lógico

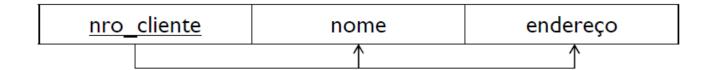
#### Análise Formal:

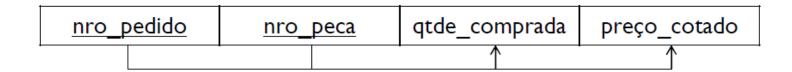
- Dependências Funcionais:
  - Restrições entre atributos:
    - Avaliação da qualidade dos esquemas de relação
    - Garantia de consistência da base de dados

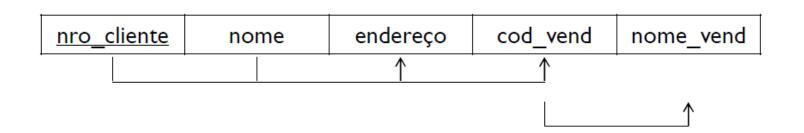
### Dependência Funcional

É uma restrição entre dois subconjuntos de atributos (A e B) de  $\mathcal{R}_{\star}$  sendo denotada por A  $\rightarrow$  B

Especifica uma restrição nos possíveis registros de R(R):


Se t<sub>i</sub>[A] = t<sub>i</sub>[A] então t<sub>i</sub>[B] = t<sub>i</sub>[B] para quaisquer i, j


Neste caso diz-se que A determina funcionalmente B (ou alternativamente que B depende funcionalmente de A)


### **Exemplos:**

```
{RA} → {Nome_Aluno, Curso_Aluno}
{Codigo Cliente, Codigo Vendedor} → {quantidade, valor total}
```

### Notação para Dependência Funcional







# Dependência Funcional

Propriedade semântica, identificada pelo projetista do BD Pode ser verificada na instância do BD mas não é definida a partir dela

### Exemplo: Considerando a relação:

Produto {ID, Nome, Valor}

t (INT, VARCHAR(50), DECIMAL(4,2))

r1<1, 'Mouse', 59.99>

r2<2, 'Teclado', 99.99>

r3<3, 'Monitor', 999.99>

As DFs são atendidas?

ID → Nome

ID → Valor

Nome → Valor

Valor → Nome

### Consistência

Na construção de um SGBD baseado no modelo relacional:

- Definição das relações baseada na análise de DFs;
- Formas normais;
- Uma relação está em uma determinada forma normal quando satisfaz certas propriedades baseadas nas DFs;
- Colocar uma relação em uma forma normal
  - Normalização

### Normalização

#### Normalização de Relações:

- Baseada nas DFs;
- Garante consistência na construção do sistema:
  - redução de anomalias;
  - redução de redundância;
- Formas Normais (FNs) baseadas em DFs:
  - baseadas em chave primária: 2a FN, 3a FN;
  - baseadas em chaves candidatas: FN de Boyce-Codd (FNBC ou, em Inglês, BCNF).
- FN baseada em dependências multivaloradas:
  - 4a FN
- FN baseada em dependências de junção:
  - 5a FN
- Para atender uma Forma Normal, a Relação deve atender a regra definida e sua anterior

# 1ª Forma Normal (1FN)

#### Restá na 1FN se:

- todo valor em R for atômico
- Rnão contém grupos de repetição

#### Considerações:

- geralmente considerada parte da definição de  $\mathcal R$
- não permite atributos multivalorados, compostos ou suas combinações

### 1ª Forma Normal (1FN)

Exemplo:

Cliente (nro cli, nome, {end\_entrega})

| nro_cli | nome                | end_entrega                   |
|---------|---------------------|-------------------------------|
| 124     | João dos Santos     | Rua 10, 1024<br>Rua 24, 1356  |
| 311     | José Ferreira Neves | Rua 46, I 344<br>Rua 98, 4456 |

### 1ª Forma Normal (1FN)

Exemplo: Cliente (nro\_cli, nome, {end\_entrega})

### Adequação:

- 1. Substituir o grupo de repetição pelo máximo de valores estabelecido para o grupo (genérico e gera muitos *null*)
- 2. Expandir a chave primária (redundância)
- 3. Gerar nova relação para o grupo de repetição definindo nova PK (genérica, sem redundância)
- 1. Cliente (nro cli, nome, rua1, numero1, rua2, numero2)
- 2. Cliente (nro cli, nome, rua, numero)
- 3. Cliente (<u>nro cli</u>, nome)
  Cliente Entrega (<u>nro cli</u>, <u>rua</u>, <u>numero</u>)

### 2ª Forma Normal (2FN)

Definição: O esquema de relação  $\mathcal R$  está na 2FN se todo atributo não primário\* A em  $\mathcal R$  tem dependência funcional total da chave primária de  $\mathcal R$ 

#### Deve estar na 1FN

```
Exemplo: Pedido (codigo_pedido, data_pedido, codigo_peca, descricao_peca, quantidade_comprada, preco_cotado)

DFs: codigo_pedido → data_pedido codigo_peca → descricao_peca {codigo_pedido, codigo_peca} → {quantidade_comprada, preco_cotado}
```

# 2ª Forma Normal (2FN)

Adequação: Para cada sub-conjunto de atributos da chave primária, gerar uma relação com esse sub-conjunto como sua chave primária;

- Incluir os atributos da relação original na relação correspondente à chave primária apropriada:
  - colocar cada atributo junto com a coleção mínima da qual ele depende, atribuindo um nome a cada relação.

#### Exemplo:

Pedido (codigo pedido, data)

Peca (codigo peca, descricao peca)

Pedido\_Peca (codigo pedido, codigo peca, quantidade\_comprada, preco\_cotado)

# 3ª Forma Normal (3FN)

- 1. Está na 2FN;
- 2. Nenhum atributo não primário de R for transitivamente dependente da chave primária.

**Dependência transitiva**: Atributo não chave faz dependência funcional com atributo não chave

**Exemplo:** Cliente (codigo cli, nome\_cli, telefone\_cli, codigo\_vendedor, nome\_vendedor)

DFS: codigo\_cli → nome\_cli, telefone\_cli codigo\_vendedor → nome\_vendedor

### 3ª Forma Normal (3FN)

#### Adequação:

- Para cada determinante que não é uma chave candidata, remover da relação os atributos que dependem desse determinante
- Criar uma nova relação contendo todos os atributos da relação original que dependem desse determinante
- Tornar o determinante a chave primária da nova relação

#### Exemplo:

```
Cliente (<u>codigo_cli</u>, nome_cli, telefone_cli, codigo_vendedor (FK?))
Vendedor (<u>codigo_vendedor</u>, nome_vendedor)
```

#### Assim como a 2FN, a 3FN evita:

- Inconsistência e anomalias causadas por redundância de informações;
- Perda de informação em operações de remoção/alterações na relação.

### 3ª Forma Normal (3FN)

• Considera-se que uma Relação (R) já está normalizado se atende à 3FN

 $\mathcal R$ está na FNBC se para cada dependência funcional X  $\xrightarrow{}$  A, X é uma superchave de  $\mathcal R$ 

Diferença entre FNBC e 3FN:

- 3FN permite A primário não se aplica à FNBC
- Se Restá na FNBC → Restá na 3FN
- Se  $\mathcal R$  está na 3FN, não necessariamente  $\mathcal R$  está na FNBC.

Na prática, a maioria dos esquemas de relação que está na 3FN também está na FNBC.

Exemplo: Filme (nome, ano, duração, nome\_estudio, endereço\_estudio)

| nome                | ano  | duração | nome_estudio | endereço_estudio |
|---------------------|------|---------|--------------|------------------|
| Star Wars           | 1977 | 124     | Fox          | Elm St.          |
| Empire Strikes Back | 1980 | 143     | Fox          | Elm St.          |
| Gone With the Wind  | 1939 | 181     | Paramount    | Pine St.         |
| Lion King           | 1994 | 124     | Disney       | Oak St.          |
| Return of the Jedi  | 1983 | 165     | Fox          | Elm St.          |
| Pocahontas          | 1995 | 115     | Disney       | Oak St.          |

#### **Problemas:**

Redundância;

Anomalia de Updates;

Anomalia de Deletes;

Adequação: Aplicar a 3FN (Gera decomposição em Relações)

• Não deve ser feita qualquer decomposição

Solução errada:

Filme (<u>nome</u>, ano, duração (FK))

Estudio (duração, nome\_estudio, endereço\_estudio)

Viola FN

| nome                | ano  | duração |                       | duração | nome_estudio | endereço_estudio |        |         |
|---------------------|------|---------|-----------------------|---------|--------------|------------------|--------|---------|
| Star Wars           | 1977 | 124     |                       | 124     | Fox          | Elm St.          |        |         |
| Empire Strikes Back | 1980 | 143     |                       | 143     | Fox          | Elm St.          |        |         |
| Gone With the Wind  | 1939 | 181     |                       | 181     | Paramount    | Pine St.         |        |         |
| Lion King           | 1994 | 124     | Registros<br>Espúrios |         |              | 124              | Disney | Oak St. |
| Return of the Jedi  | 1983 | 165     |                       | 165     | Fox          | Elm St.          |        |         |
| Pocahontas          | 1995 | 115     | ESPUTIOS              | 115     | Disney       | Oak St.          |        |         |

### Solução:

Filme (<u>nome</u>, ano, duração, nome\_estudio(FK)) Estudio (<u>nome estudio</u>, endereço\_estudio)

| nome                | ano  | duração | nome_estudio |
|---------------------|------|---------|--------------|
| Star Wars           | 1977 | 124     | Fox          |
| Empire Strikes Back | 1980 | 143     | Fox          |
| Gone With the Wind  | 1939 | 181     | Paramount    |
| Lion King           | 1994 | 124     | Disney       |
| Return of the Jedi  | 1983 | 165     | Fox          |
| Pocahontas          | 1995 | 115     | Disney       |

| nome_estudio | endereço_estudio |
|--------------|------------------|
| Fox          | Elm St.          |
| Paramount    | Pine St.         |
| Disney       | Oak St.          |

### 4ª Forma Normal (4FN)

Um esquema de relação está na 4FN se:

- Atende a FNBC
- todas as Dependências Multivaloradas são triviais ou;
- para cada DM não-trivial A -» B, A é uma superchave em R

Dependência Multivalorada (DM): restrição entre dois conjuntos de atributos:

A multidetermina B (ou B é multidependente de A)

Atributos Multivalorados de uma Relação devem ser decompostos para uma nova relação, definindo o correto relacionamento entre relações e a chave primária (fundamentalmente composta) – Uma das possíveis adequações da 1FN.

### 4ª Forma Normal (4FN)

• Exemplo:

Pessoa (codigo, nome, {email})

Adequação:

Pessoa (codigo, nome)

Pessoa\_Email (codigo\_pessoa (FK), email)

Evita redundância nos registros

Evita inconsistências causadas por

• inclusão/remoção/alteração de tuplas;

### 5ª Forma Normal (5FN)

#### Estar na 4FN

Não deve haver dependência de junção

• Evitar a criação de relação PK/FK quando não for estritamente necessário

#### • Exemplo:

```
Produto (<u>idProduto</u>, descrição, idFornecedor(FK), quantidade)
Fornecedor (<u>idFornecedor</u> nome)
Nota (<u>idNota</u>, idVendedor(FK), idProduto(FK), idFornecedor(FK))
```

#### Adequação:

```
Produto (<u>idProduto</u>, descrição, idFornecedor(FK), quantidade)
Fornecedor (<u>idFornecedor</u>, nome)
Nota (<u>idNota</u>, idVendedor(FK), idProduto(FK))
```

# Exemplo Engenharia Reversa

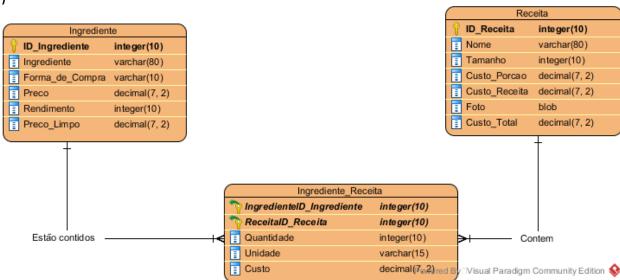
#### FICHA TÉCNICA PARA RESTAURANTE

| Nome da receita Brigadeiro Cremoso Tamanho da receita 100 porções Custo da receita 12.00 Custo da porção 0.12 |            |         |                    |       | FOTO            |                |       |
|---------------------------------------------------------------------------------------------------------------|------------|---------|--------------------|-------|-----------------|----------------|-------|
| Ingredientes                                                                                                  | Quantidade | Unidade | Forma de<br>Compra |       | Rendimento<br>% | Preço<br>limpo | Custo |
| Leite Condensado                                                                                              | 1          | Lata    | Kg                 | 20.00 | 100             | 20.00          | 8.00  |
|                                                                                                               |            |         |                    |       |                 |                |       |
|                                                                                                               |            |         |                    |       |                 |                |       |
|                                                                                                               |            |         |                    |       |                 |                |       |
|                                                                                                               |            |         |                    |       |                 |                |       |
|                                                                                                               |            |         |                    |       |                 |                |       |
|                                                                                                               |            |         |                    |       |                 |                |       |
|                                                                                                               |            |         |                    |       |                 |                |       |
| Custo Total                                                                                                   |            |         |                    |       |                 |                |       |

### Exemplo Engenharia Reversa

### Solução:

Receita(Codigo, Nome, Tamanho, Custo\_Total, Custo\_Porcao, Foto, Custo\_Receita)


t<Int, Varchar(60), Int, Decimal(7,2), Decimal(7,2), Blob, Decimal(7,2)>

Ingrediente(ID\_Ingrediente, Nome, Forma\_Compra, Preco, Rendimento, Preco\_Limpo)

t<Int, Varchar(50), Varchar(15), Decimal(7,2), Int, Decimal(7,2)>

Receita\_Ingrediente(ID\_Ingrediente, ReceitaCodigo, Quantidade, Unidade, Custo)

t<Int, Int, Int, Varchar(10), Decimal(7,2)>



1. vendedor (nro\_vend, nome\_vend, {cliente (nro\_cli, nome\_cli)})

As sequintes dependências funcionais devem ser garantidas na

As seguintes dependências funcionais devem ser garantidas na normalização:

nro\_vend → nome\_vend; nro\_cli → nome\_cli.

Observação: considere que um vendedor pode atender diversos clientes, e um cliente pode ser atendido por diversos vendedores.

2. aluno (nro\_aluno, cod\_depto, nome\_depto, sigla\_depto, cod\_orient, nome\_orient, {fone\_orient}, cod\_curso)

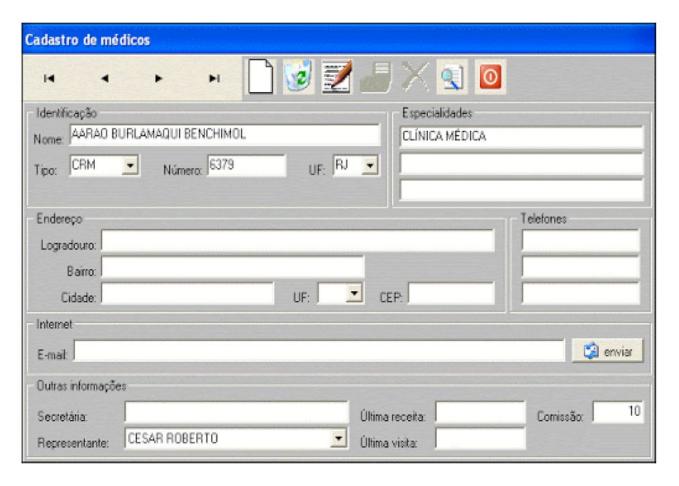
As seguintes dependências funcionais devem ser garantidas na normalização:

```
cod_depto→ {nome_depto, sigla_depto};
cod_orient→ {nome_orient, fone_orient};
nro_aluno→ {cod_depto, cod_orient, cod_curso};
```

#### Observações adicionais:

- um aluno somente pode estar associado a um departamento;
- um aluno cursa apenas um único curso;
- um aluno somente pode ser orientado por um único orientador

3. aluno (nro\_aluno, nome\_aluno, {curso (nro\_curso, descrição\_curso, ano\_ingresso, nro\_depto, nome\_depto)})


As seguintes dependências funcionais devem ser garantidas na normalização:

```
nro_aluno→ nome_aluno;
nro_curso → descrição_curso;
nro_depto→ nome_depto;
{nro_aluno, nro_curso} → ano_ingresso;
nro_curso → nro_depto.
```

#### Observações adicionais:

- um aluno pode cursar mais do que um curso;
- um curso somente pode ser oferecido por um único departamento.

4. Aplicar as formas normais ao formulário abaixo:

